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Cytolethal Distending Toxin: A Bacterial Bullet Targeted to Nucleus
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Cytolethal distending toxin (Cdt) is a newly added member of bacterial protein toxins
that hijack the control system of eukaryotic cells. Cdts are produced by several path-
ogenic bacteria causing chronic infectious diseases. They are composed of three sub-
units, CdtA, CdtB and CdtC, which together form a ternary complex. CdtB is the
active component, and CdtA and CdtC are involved in delivering the CdtB into the
cells. The sophisticated strategy of Cdt to control host cells is CdtB-mediated limited
DNA damage of the host cell chromosome, which triggers the response of the cell
cycle checkpoint and results in G2 arrest in the cells. Cdt also induces apoptotic cell
death of lymphocytes, which may be relevant to onset or persistence of chronic infec-
tion by the producing bacteria. The study of this toxin is expected to provide us infor-
mation on a novel strategy by which bacteria interact with host cells.

Key words: apoptosis, cell cycle arrest, crystal structure, cytolethal distending toxin,
nuclear transport.

Isolation of Cdt and its encoded genes
Cytolethal distending toxin (Cdt) was discovered as a

new heat-labile toxin from Escherichia coli and Campylo-
bacter spp. associated with diarrheal disease (1, 2). The
term Cdt reflected the unique properties of this protein
causing progressive cell distension and cytotoxicity to
cultured cells such as CHO, HeLa, and Hep-2 cells (Fig.
1). Another unique phenotype of the Cdt-intoxicated cells
is cell cycle arrest at the transition from G2 to M phase
(Fig. 1). The genes of this unique toxin have been isolated
as cdtA, -B, and -C, tandemly located in the cdt locus. A
valiant cdt gene, cdtI-V, was found in E. coli (3–6). Full
sets of cdt genes were also isolated from causative agents
of chronic infection such as Campylobacter jejuni (7),
Haemophilus ducreyi (8), Shigella dysenteriae (9), Actino-
bacillus actinomycetemcomitans (10–12), Helicobacter
hepaticus (13), and other species (14, 15). Recently, only
the cdtB gene was discovered in the genome of Salmo-
nella typhi, the causative bacteria of typhoid fever (16).

Complex formation
At the beginning of the Cdt study, it was uncertain

which of the subunits were active and whether the three
subunits formed a complex. Most recent studies indicate
that all three components, CdtA, -B, and -C, are required
for full activity (17–21). Pull-down assay revealed that
the active Cdt holotoxin is a heterotrimer, consisting of
CdtB as the enzymatically active subunit, and CdtA and
CdtC which mediate the delivery of CdtB into host cells
(17–20). The crystal structure of Cdt holotoxin was solved
as a tripartite complex of CdtA, CdtB and CdtC, which
will be discussed in later paragraph. S. typhi CdtB was
reported to be an exceptional case of Cdt holotoxin. The

genome sequence of S. typhi includes no apparent homo-
logues of cdtA and cdtC in the vicinity of cdtB, but Cdt-
induced intoxication occurs by the delivery of CdtB into
the host cells during or after cellular internalization of
the bacteria (16).

Active subunit, CdtB
It has been suggested that CdtB subunit is a nuclease

or a phosphatase. Position-specific iterated (PSI) BLAST
search of the protein data bank using CdtB polypeptides
as query sequences indicated that the residues of DNase
I involved in phosphodiester bond hydrolysis (His134 and
His252) are conserved in CdtB as well as their respective
hydrogen bond pairs (Glu78 and Asp212) in the cdtII
genes (22–24). CdtB also contains a pentapeptide motif
found in all DNase I enzymes. A crude Cdt preparation
showed in vitro DNase activity against plasmid DNA as a
substrate. Four of five proteins carrying mutations in
amino acids corresponding to DNase I active-site resi-
dues lacked DNase activity in vitro and failed to induce
cell cycle arrest and cytodistension as a holotoxin in vivo
(22). Electroporation of CdtB directly into cells also
resulted in cellular distension and chromatin fragmenta-
tion (23). Moreover, transient expression of the C. jejuni
cdtB gene in cultured cells caused marked chromatin dis-
ruption (25). Microinjection of low amounts (0.001 mg/ml)
of CdtB induced cell cycle arrest and cytodistension.
Since H. ducreyi CdtB has 106 times lower activity for
chromatin change than a bovine DNase I, a DNA repair
complex such as that of histone H2AX and Rad50 was
used as marker for the detection of limited double-strand
breakage (26). H. ducreyi CdtB was demonstrated to
induce histone H2AX phosphorylation and Mre11 re-
localization as early as 1 h after intoxication of HeLa
cells (26). C. jejuni Cdt was also shown to promote the for-
mation of Rad50 foci, one of the DNA repair responses,
which are formed around double-strand DNA breaks
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(27). These findings suggest that the trigger of cellular
response induced by Cdt is chromatin injury or double-
strand breakage by the CdtB subunit.

Activation of G2 checkpoint
E. coli, C. jejuni and H. ducreyi Cdts were demon-

strated to block the HeLa cell cycle at the G2/M transi-
tion by preventing dephosphrylation of the inactive, tyro-
sine-phosphorylated form of Cdc2 (28–32), suggesting
that the Cdts from various bacteria activate some kinase/
phosphatase in the signaling network controlling Cdc2
activity. Involvement of Cdc2 in the G2 checkpoint was
also demonstrated in a yeast model, in which the Cdt-tox-
icity did not occur in CDK1 mutated yeast (33). Highly
expressed Cdc25C prevents the Cdt-intoxicated cells
from G2 arrest (34), suggesting that Cdc25C functions
upstream of the signaling network to keep Cdc2 in inacti-
vated form. H. ducreyi Cdt was found to activate the chk2
or 1 kinase in epithelial cells. This effect resembled the
checkpoint response activated by ionizing radiation (35).
Moreover, Cdt-intoxication was delayed in the Ataxia Tel-
angiectasia-mutated gene (ATM)-deficient lymphoblast-
oid cell lines, suggesting that the response to Cdt is ATM-
dependent. The ATM-dependent signaling pathway was
further suggested by the finding that caffeine partly
overrode Cdt-induced cell cycle arrest (35). The possible
scenario of Cdt-induced G2 arrest is shown in Fig. 2.

Related molecules to Cdt-induced cell cycle arrest
H. ducreyi Cdt-treated fibroblasts showed an early

induction of the cycline-dependent kinase inhibitor, p21
(Cip1/Waf1) (35). A. actinomycetemcomitans Cdt also
induced G2 arrest in HS-72 cells, a murine B cell hybrid-
oma, and up-regulated the expression of the p21 (36). In
addition to p21, normal fibroblasts in which cell cycle was
arrested both in G1 and G2 by H. ducreyi Cdt-treatment,
showed an early induction of the P53 gene and an
increased amount of phosphorylated p53 at the 15th ser-
ine residue (35). An ATM-deficient lymphoblastoid cell
line treated with Cdt showed slower kinetics of p53 stabi-
lization, resulting in slow intoxication by Cdt. p53 is
mainly involved in the regulation of G1 checkpoint

through transcriptional induction of p21 (37). It is possi-
ble that P53 is also involved in G2 checkpoint (38), but
ectopic expression of a dominant negative P53 mutant
did not inhibit Cdt-mediated G2 arrest in HS-72 B cell
(36). Cdt-intoxicated endothelial cells were arrested in
G2 without p53-phosphorylation (39). The role of p53 in
Cdt-intoxication remains to be clarified in future studies.

Cdt transport
Cdt secreted from bacteria targets the host cells. C.

jejuni CdtA and CdtC were shown to exist in bound form
on the cell surface of HeLa cells (57). Also the incubation
of HeLa cells with H. ducreyi CdtA-CdtC complex blocked
the killing of these cells by the Cdt holotoxin (58). Intoxi-
cation of H. ducreyi Cdt was inhibited by removal of
clathrin coat via K+ depletion, suggesting that Cdt can be
internalized through a clathrin-coated pit (59). Further-
more, intoxication was also inhibited in the cells treated
with bafilomycin A1 or nocodazole, which are known to
block the fusion of early endosomes with downstream
compartments. Disruption of the Golgi complex by treat-
ment with brefeldinA or ilimaquinone blocked intoxica-
tion, suggesting that Cdt can be transported by a retro-
grade pathway (59).
Since CdtB is implicated in a genotoxic role of Cdt, sev-
eral attempts were made to probe CdtB in the target
nucleus. CdtB microinjected into the cytoplasm was
shown to localize in the nucleus and induce chromatin
collapse (25, 60). An in vitro transport assay demon-
strated that the nuclear localization of CdtB is mediated
by active transport (60). An assay using transient expres-
sion of a series of truncated CdtB-GFP fusion proteins
revealed that residues 48–124 constitute the minimum
region involved in nuclear transport of A. actinomycetem-
comitans CdtB. Separately E. coli CdtB-II was demon-
strated to possess nuclear localization signals (NLS) at
195–210 and 253–269 in the C-terminus of the molecule,
which correspond to the bipartite NLS (61). These are the
first demonstrations that a bacterial toxin possessing a
unique domain for nuclear transport is transferred to the
animal cell nucleus.

Fig. 1. Cell cycle inhibitory effect
of CDT. Intoxicated HeLa cells with
Cdt (10 pg/ml) shows G2 arrest after
24 h and progressive cellular disten-
sion after 48 h. The diagram at top
left indicates the possible transport
pathway of Cdt into the target
nucleus. It is still not clear whether
the whole Cdt complex or only the
active subunit, CdtB enter the cell.
Finally CdtB (or Cdt complex) enters
the nucleus by active transport. In the
nucleus, CDTB-mediated chromatin
injury can trigger the activation of the
checkpoint machinery and subse-
quent cell-death pathway.
J. Biochem.
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Crystal structure
The crystal structure of H. ducreyi Cdt holotoxin has

recently been reported (62). Cdt forms a ternary complex
of CdtA, CdtB, and CdtC with three interdependent
molecular interfaces. The crystal structure of the CdtB
subunit in the holotoxin was very similar to that of the
DNase-I (Fig. 3), and CdtA and CdtC constitute two ricin-
like lectin domains. In structural alignments with
DNase-I, two critical histidine residues of CdtB (His160,
and His274) coincide almost perfectly with the active-site
histidine residues. Furthermore, highly conserved resi-
dues in DNase-I that contact with substrate DNA
(Arg111, Asn170, and Arg41) have nearly identical coun-
terparts in CdtB as Arg144, Asn201, and Arg117, respec-
tively. However, dissimilarity is also found in some
points. One of two possible catalytic histidine residues in
CdtB does not have a hydrogen bond counterpart, due to
the presence of a valine residue instead of a glutamic acid
residue.

Cdt-induced cell death
Whole cells or culture supernatant of a haemolysin-

deficient mutant of H. ducreyi induced apoptosis in Jur-
kat T cells, which was inhibited by CdtC-neutralizing
antibodies (40). A. actinomycetemcomitans Cdt induces
apoptosis not only in human T cells but also in B cell

lines (35, 41–43). That most lymphocytes and related
cells are demonstrated to undergo apoptosis by Cdt sug-
gests the immunosuppressive role of Cdt in the process of
chronic infection (12, 35, 44). On the other hand A. actin-
omycetemcomitans Cdt does not induce apoptosis in
human periodontal ligament cells or gingival fibroblasts,
although DNA synthesis was inhibited in the early
response (45). Thus, the molecular mechanism by which
Cdt induces cell death of epithelial and fibroblastic cells
remains unclear.

Cdt and diseases
Cdt was found from clinically isolated enteropatho-

gens, such as E. coli and C. jejuni, which cause diarrhea
in humans and animals (1, 2). In addition the cdt genes
were found to co-exist with other virulence genes such as
cnf or eae (46, 47). Indeed Cdt-producing E. coli induced
excretion of watery feces in a suckling mouse model (9).
However, many statistical studies showed that Cdt or the
cdt gene was present in the bacteria isolated from the
patients with diarrhea at relatively low frequency (48).
Calves inoculated with a cdt-III negative mutant devel-
oped diarrhea in the same way as those inoculated with
wild-type necrotoxic E. coli (NTEC2), which carries cnf2
and cdt-III genes on the pVir plasmid (49). Thus it is still
unclear whether Cdt plays a role in causing diarrhea.

Other diseases in which Cdt was implicated in the
pathogenesis are chancroid, a sexually transmitted geni-
tal ulcerative lesion (8, 30, 50) and periodontitis, a
chronic inflammatory disease that is characterized by
progressive destruction of the alveolar bone and eventual
loss of the teeth (51). A. actinomycetemcomitans is one of
the causative bacteria of the localized juvenile or adult
periodontitis (52). Statistical analysis suggests that the
cytotoxic and immunosuppressive properties of A. actino-

Fig. 2. CDT-induced G2 checkpoint. DNA damage by CdtB
action could activate checkpoint control. In normal cells, dephos-
phorylation of threonine14 and tyrosine15 in Cdc2/cyclin B com-
plex, a key molecule for the progression of the cell cycle, triggers G2/
M transition in the cell cycle. However, in Cdt-intoxicated cells,
these residues in Cdc2 remain phosphorylated in Cdc2/cyclin B
complex, because of the Cdc25C-sequestration, induced by G2
checkpoint machinery.

Fig. 3. Structural alignment of DNase I to Haemophilus
ducreyi CdtB. DNase I and CdtB are shown in red and yellow
respectively.
Vol. 136, No. 4, 2004
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mycetemcomitans Cdt may perturb the host immunity
and contribute to the pathogenesis of aggressive perio-
dontitis (50, 53–56).

Epilogue
Several bacterial virulence factors have been shown to

inhibit the proliferation of the target cells, suggesting the
existence of bacterial mechanisms to control the eukaryo-
tic cell cycle (32, 63, 64). Cdt is a representative example
of toxins that hijack the control system in eukaryotic
cells, and such virulence factors have been termed
“cyclostatins” or “cyclomodulins” (63). The sophisticated
strategy of the Cdt-producing pathogens to control host
cells is CdtB-mediated limited DNA damage, which trig-
gers the response that eventually halts the cell cycle (25,
65). In addition, once in the target cells, CdtB sets out on
a journey to the nucleus by using the host cell nuclear
transport machinery (60, 61). Further studies of such an
intelligent bacterial weapon will surely provide more
information at molecular level about the cunning strate-
gies employed by pathogenic bacteria to achieve chronic
infection.
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